

TMS IntraWeb Grids

1/6

Exploring the Async capabilities of TMS IntraWeb grids

For as long as web development is being done, developers have tried to make the experience

of using web applications as similar as possible as using native Windows applications. Initially,

this was done by delegating all behavior that didn't require direct interaction with the server to

Javascript code running in the browser. In 1999, Microsoft added the XMLHTTP ActiveX control

as standard component in Internet Explorer 5. It took some time till the XMLHttpRequest

object was being heavily used in all kinds of web applications. With XMLHttpRequest, it was

possible to send data to the server and receive data back without requiring a full page refresh.

The most well-known early large scale adaptors of this technology were Outlook Web Access in

2000, Google's GMail in 2004 and Google Maps in 2005. Around this time, the techniques to

asynchronously send and receive data from the server were categorized under the umbrella

AJAX.

For Delphi developers, the IntraWeb framework from Atozed nicely encapsulates all technical

wizardry that is needed to make XMLHttpRequest work to asynchronously send data to the

server and asynchronously update parts of a web page. As RAD as we can expect from a

Delphi framework, other than handling Async events in Delphi code, there is not much extra to

do.

Introduction to the very basics of Ajax in IntraWeb

To show how really simple using the asynchronous capabilities of IntraWeb are, drop a

TIWLabel, TIWEdit and TIWButton on the form and handle the TIWButton's OnAsyncClick

event. In this event handler, add the code:

procedure TIWForm4.IWButton1AsyncClick(Sender: TObject;

 EventParams: TStringList);

begin

 IWLabel1.Caption := IWEdit1.Text;

end;

When the button is clicked, the content of the edit control is asynchronously sent to the server

and the text of the label is asynchronously updated. IntraWeb has taken care to send the

IWEdit1 text asynchronously to the server, trigger the OnAsyncClick event handler code server

side and send back the instruction to update just the label's caption. Given that a minimal

amount of data is used to accomplish this, the update of the label is blinking fast and behaves

almost identically to a native Windows application. In a similar way, most of the basic

IntraWeb components offer one or multiple asynchronous events and support updating

components asynchronously.

Introduction to TMS IntraWeb grids

TMS software offers two grid components for IntraWeb. A non DB-aware grid TTIWAdvWebGrid

and a DB-aware grid TTIWDBAdvWebGrid. As TTIWDBAdvWebGrid descends from the same

internal TTIWCustomWebGrid as TTIWAdbWebGrid descends, the capabilities and features of

both components are very similar. The capabilities far surpass these of the standard IntraWeb

grid component. There are a lot more ways to show data in the grid and a lot more built-in

behaviors like for example sorting and paging. The grids have built-in capabilities to update

itself fully client-side or with fast asynchronous server interaction. The choice is left to the

developer what specific features will be used. Of course it makes sense that when a specific

behavior can be obtained without any server interaction at all, this is even faster. Although the

article focuses on using the asynchronous capabilities of the grid, a short example of using the

TMS IntraWeb Grids

2/6

fully client-side built-in behaviors in the grid is given to show the difference. To see this

behavior, drop a default TTIWAdvWebGrid on the form and add the following code:

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

begin

 TIWAdvWebGrid1.ShowFooter := true;

 TIWAdvWebGrid1.Columns[0].Title := 'Quantity';

 TIWAdvWebGrid1.Columns[0].FooterType := ftDynSum;

 TIWAdvWebGrid1.Columns[0].ColumnType := ctDynEdit;

 TIWAdvWebGrid1.Columns[1].ColumnType := ctDynText;

 TIWAdvWebGrid1.Columns[1].Formula := 'C0*1.19';

 TIWAdvWebGrid1.Columns[1].DynPrecision := 2;

 TIWAdvWebGrid1.Columns[1].FooterType := ftDynSum;

 TIWAdvWebGrid1.SortSettings.Show := true;

end;

The result is that in all cells in the first column, an edit control is shown and that in the footer,

the sum of the values in the column is shown. In the 2nd column, a number is shown that is

the result of the calculation of the value in column 0 multiplied by 1.19, for example to

calculate a price including TAX and in the footer the sum of the prices with TAX included. As

the user types numbers in column 0, the value in the footers and second column are updated

without any server interaction.

Asynchronously updating the grid

The grid has two methods to update cell values asynchronously:

grid.AsyncSetCell(Col,Row,Value);

grid.AsyncUpdateAllCells;

The first method updates just one cell, the second method updates the content of all cells as

set with grid.Cells[Col,Row]:string asynchronously.

To demonstrate this, add a default TTIWAdvWebGrid, TIWEdit, TIWLabel and TIWButton on

the form with following code:

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

begin

 TIWAdvWebGrid1.ActiveRow := 0;

 TIWAdvWebGrid1.ActiveRowColor := clInfoBk;

 TIWAdvWebGrid1.AsyncActiveRowMove := true;

end;

procedure TIWForm4.IWButton1AsyncClick(Sender: TObject;

 EventParams: TStringList);

var

 ar: integer;

begin

 ar := TIWAdvWebGrid1.ActiveRow;

 IWLabel1.Caption := 'Value for row: ' + inttostr(ar);

 TIWAdvWebGrid1.AsyncSetCell(0,TIWAdvWebGrid1.ActiveRow,IWEdit1.Text);

 TIWAdvWebGrid1.ActiveRow := ar + 1;

end;

TMS IntraWeb Grids

3/6

In this sample, the active row of the grid is indicated in color as set with grid.ActiveRowColor

and setting grid.AsyncActiveRowMove = true means that changing the property grid.ActiveRow

will asynchronously update the highlighted active row in the browser. In the asynchronous

event of the button, the value of the cell in column 0 in the active row is set and the active row

is moved one row further. In the case the grid is populated with a lot of data, possibly images,

controls etc... it is obvious that asynchronously just updating a cell value is significantly faster

than having to rerender the entire grid during a page refresh.

Asynchronously sorting the grid

Typically in grids, sorting on a specific column is done by clicking the column header. When

grid.SortSettings.Show is set to true, sorting by such column header click is enabled. A small

triangle is shown on the column that is sorted indicating the sort direction. To enable sorting

asynchronously, set grid.AsyncSorting = true and specify the way the column should be sorted

with grid.Columns[index].SortFormat. Clicking on the column title will then toggle the sort

direction on each click and update the entire grid with sorted data asynchronously.

Example:

Asynchronous paging in the grid

Paging is a common technique when showing large amounts of data in tabular form in web

applications. To reduce the amount of data that needs to be sent to the browser, data is sent

page by page. The TMS grids have built-in paging capabilities. How paging is done is

configured in the footer. Different types of paging can be chosen, like showing a list of all

pages in the header, show just a Next/Previous button and many more options. The number of

rows per page is set with grid.RowCount and the total nr. of rows is set with grid.TotalRows.

There is just one property, grid.AsyncPaging to set to true, and walking through the different

pages of the grid is done fully asynchronously. When clicking in the header to navigate to a

different page, only the cell values for the new page are being sent from the server. The

sample code snippet shows how a default TTIWAdvWebGrid is setup to perform asynchronous

paging:

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

var

 i: integer;

begin

 TIWAdvWebGrid1.Controller.PagerType := cptLink;

 TIWAdvWebGrid1.Controller.Pager := cpPageList;

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

const

 strarr : array[0..9] of string =

('BMW','Audi','Porsche','Mercedes','VW','Ferarri','Lamborghini','Porsche','Aston

Martin', 'Maseratti');

var

 i: integer;

begin

 for I := 0 to 9 do

 TIWAdvWebGrid1.Cells[0,i] := strarr[i];

 TIWAdvWebGrid1.AsyncSorting := true;

 TIWAdvWebGrid1.SortSettings.Show := true;

 TIWAdvWebGrid1.Columns[0].Title := 'Brand';

 TIWAdvWebGrid1.Columns[0].SortFormat := sfAlphabetic;

end;

TMS IntraWeb Grids

4/6

 TIWAdvWebGrid1.Controller.MaxPages := 4;

 TIWAdvWebGrid1.Controller.IndicatorFormat := 'Page %d';

 TIWAdvWebGrid1.RowCount := 10;

 TIWAdvWebGrid1.TotalRows := 100;

 for I := 0 to 99 do

 TIWAdvWebGrid1.Cells[0,i] := 'Row: ' + inttostr(I);

 TIWAdvWebGrid1.AsyncPaging := true;

end;

Asynchronous editing in the grid

Just like when using a native DB grid, typically a record (row) is put in edit mode and when

row editing is done, the edited values are posted back to the database. The TMS IntraWeb

grids have this behavior built-in for both the DB-aware and non DB-aware grid. Either the grid

can be programmatically set in edit mode or programmatically post data, or one column can be

configured as a data button column. This means that when grid.Columns[index].ColumnType is

set to ctDataButotn, a button appears in the column to set the record (row) in edit mode and

when in edit mode, two buttons appear in this column to either post or cancel. When the

record (row) is put in edit mode, the inplace editors for this row will appear. For each column a

different inplace editor can be chosen. The grid comes default with different edit controls,

combobox, datepicker, checkbox, spin edit, memo... This sample shows how easy it is to have

the entire process of sophisticated editing working asynchronously in the grid. A default grid is

initialized with the code:

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

begin

 TIWAdvWebGrid1.Columns.Add;

 // enable async editing

 TIWAdvWebGrid1.AsyncEdit := true;

 // column 0 works as data button column to start editing, post or cancel

 TIWAdvWebGrid1.Columns[0].ColumnType := ctDataButton;

 // set editor types for column 1 & 2

 TIWAdvWebGrid1.Columns[1].Editor := edEdit;

 TIWAdvWebGrid1.Columns[2].Editor := edCombo;

 // set the values for the combobox in column 2:

 TIWAdvWebGrid1.Columns[2].ComboItems.Add('BMW');

 TIWAdvWebGrid1.Columns[2].ComboItems.Add('Audi');

 TIWAdvWebGrid1.Columns[2].ComboItems.Add('Mercedes');

 TIWAdvWebGrid1.Columns[2].ComboItems.Add('Porsche');

end;

With this straightforward initialization, a button appears in column 0 that can put a specific

record in edit mode. As async editing is enabled, without page refresh, the chosen inplace

editors appear as set for each column. The different columns can be edited and when done,

either the Post or Cancel button can be clicked to post back the data to the server (and

possibly database too). This data is also sent back asynchronously to the server and without

any page refresh, the grid's inplace editors disappear and the row returns back to regular

browse mode. To go one step further to show how powerful the async capabilities of the grid

are, the event OnAsyncComboChange is implemented. This event is triggered when a value is

selected in the combobox. From this event, we can for example asynchronously update a grid

cell like in the sample code. Here the value of the cell in column 3 is set to the index of the

value chosen in the combobox:

procedure TIWForm4.TIWAdvWebGrid1AsyncComboChange(Sender: TObject;

TMS IntraWeb Grids

5/6

 EventParams: TStringList; RowIndex, ColumnIndex: Integer; AValue: string);

begin

 TIWAdvWebGrid1.AsyncSetCell(3,RowIndex,

IntToStr(TIWAdvWebGrid1.Columns[2].ComboItems.IndexOf(AValue)));

end;

Async row selection and async row moving

Disjunct row selection, like in Hotmail, is easily enabled in the grid by adding a column with a

checkbox. The selection of a row can then be asynchronously handled via the event

OnAsyncRowSelect. In this event, other controls or the grid itself can be updated. The sample

code snippet, again applied to a default TTIWAdvWebGrid shows how a label is updated with

the index of the last selected row and the text of the selected row itself is asynchronously

updated to bold font:

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

var

 i: integer;

begin

 for I := 0 to 9 do

 TIWAdvWebGrid1.Cells[1,i] := 'Row ' + inttostr(i);

 TIWAdvWebGrid1.Columns[0].ColumnType := ctCheckbox;

end;

procedure TIWForm4.TIWAdvWebGrid1AsyncRowSelect(Sender: TObject;

 EventParams: TStringList; RowIndex: Integer; Checked: Boolean);

begin

 IWLabel1.Caption := 'Selected row: ' + IntToStr(RowIndex);

 if Checked then

 TIWAdvWebGrid1.AsyncSetCell(1,RowIndex,''+

TIWAdvWebGrid1.Cells[1,RowIndex]+'')

 else

 TIWAdvWebGrid1.AsyncSetCell(1, RowIndex,

 Copy(TIWAdvWebGrid1.Cells[1,RowIndex],4,

Length(TIWAdvWebGrid1.Cells[1,RowIndex]) - 7));

end;

In the cases where only one row can be selected at a time, for example by just clicking the

mouse on a row to set the active row, this can also be entirely asynchronously handled:

procedure TIWForm4.IWAppFormCreate(Sender: TObject);

var

 i: integer;

begin

 for I := 0 to 9 do

 TIWAdvWebGrid1.Cells[0,i] := 'Row ' + inttostr(i);

 TIWAdvWebGrid1.ActiveRowColor := clInfoBk;

 TIWAdvWebGrid1.AsyncActiveRowMove := true;

 TIWAdvWebGrid1.MouseSelect := msMove;

end;

Here, with setting grid.MouseSelect = msMove, a click on a row will move the active row. The

active row is shown with color clInfoBk. By setting grid.AsyncActiveRowMove = true, the active

row will be updated without full page refresh. The change of the active row can be

asynchronously tracked server side by handling the event OnAsyncGotoRow. In this event,

information in other controls can be updated to reflect the active selected row, ie:

TMS IntraWeb Grids

6/6

Conclusion

The TMS IntraWeb grids are packed with many features to operate in asynchronous scenarios.

From other IntraWeb controls the grid cells can be updated asynchronously and

simultaneously, many of the standard grid operations like editing, paging, sorting, navigation

can be fully handled asynchronously as well. By combining these capabilities, very high

performance web applications can be created that offer a near native application experience.

procedure TIWForm4.TIWAdvWebGrid1AsyncGotoRow(Sender: TObject;

 EventParams: TStringList; Row: Integer);

begin

 IWLabel1.Caption := 'Active row: '+inttostr(Row)+' Value: ' +

TIWAdvWebGrid1.Cells[1,Row];

end;

